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1. Introduction

Reducibility of trinomials has been in the focus of intensive research for

many decades. For general results on the reducibility of trinomials see the

papers [18], [19], [20], [21] and [22] of Schinzel.

Investigating the reducibility of trinomials of the special shape

(1.1) f(X) = Xn −BX + A ∈ Z[X]

also has a long history. In 1988, Rabinowitz [14] proved that if n = 5,

B = ±1 and f(X) has an irreducible quadratic factor we then have A ∈
{±1,±6,±15,±22440,±2759640}. Later for B = 1 and n > 512880 Chen

[4], and for n > 5 Le [9] determined all trinomials f(X) of the above shape

having an irreducible quadratic factor. A similar result has been obtained

for B = −1 and n > 5 by Lin [11], for n > max{512900, 8
7
B} by Yang [25],

and for n > max{30, 1
2
|B|+ 1} by Liu [12].

In [15], Ribenboim bounded |A| by a constant depending on n and |B|,
and |B| by a constant depending on n and |A| if f(X) has an irreducible

quadratic factor in Z[X]. Herendi and Pethő [8] generalized the result of

Key words and phrases. trinomials, reducibility, Diophantime properties of

polynomials.
The research was supported in part by the University of Debrecen, and by grants

K115479 (A.B.) and NK104208 (A.B.) of the Hungarian National Foundation for Scien-

tific Research. This paper was supported by the János Bolyai Scholarship of the Hun-

garian Academy of Sciences. The research was granted by the Austrian Science Fund

(FWF) under the project P 24801-N26 (I.P.) This research was carried out while the au-

thor (F.L.) was a guest of the Max Planck Institute for Mathematics in Bonn, Germany

between January and June 2017. He is also supported by grants CPRR160325161141

and an A-rated researcher award both from the NRF of South Africa and by grant no.

17-02804S of the Czech Granting Agency (F.L.) .
1
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Ribenboim for trinomials of the form Xn − BXk + A. We also mention a

result of Bremner [3], where all the irreducible cubic factors of the trinomial

xn + Axm + 1 are explicitly determined.

Later, for n > 40000 Yang and Fu [24] bounded |A| by a constant de-

pending only on |B| and bounded |B| by a constant depending only on |A|,
assuming that f(X) has an irreducible quadratic factor in Z[X] .

Let S be a finite set of positive primes and denote by S the set of all

integers having no prime factors outside of S. Denote by s the cardinality

of S and by P the largest prime in S. Although S is not a ring, we will

denote by S [X] the set of all polynomials with coefficients in S . However,

whenever we refer to the factorization of f(X) ∈ S [X], we always mean its

factorization as a polynomial in Z[X].

Theorem 1.1. Assume that the polynomial f(X) = Xn−BX+A ∈ S [X]

with gcd(A,B) = 1 has a quadratic factor g(X) = X2 − bX + a ∈ Z[X].

Then we have one of the following cases:

(i) n ≤ max{30, P + 1};
(ii) f(X) = X6k+2 − X + 1, f(X) = X6k+5 + X − 1 for k ∈ Z>0, and

these polynomials are all divisible by X2 −X + 1;

(iii) f(X) = X3k+2 +X + 1 for k ∈ Z>0, and this polynomial is divisible

by X2 +X + 1;

(iv) f(X) = Xn + (−1)nnX + (−1)n(n − 1) for n ∈ Z>1, and these

polynomials are divisible by X2 + 2X + 1;

(v) f(X) = Xn − nX + (n− 1) for n ∈ Z>1, and these polynomials are

divisible by X2 − 2X + 1.

Remark. In the above theorem cases (ii) and (iii) represent infinite families

of polynomials f(X) ∈ S [X] which have a quadratic factor. However, in

cases (iv) and (v) there are only finitely many polynomials f(X) with this

property, since for a given set S there are only finitely many values of

n ∈ Z > 0 with the property n ∈ S and n − 1 ∈ S . Indeed in this last

case x = n and y = n − 1 are solutions of the S-unit equation x − y = 1,

which has only finitely many solutions in x, y ∈ S (see e.g. Corollary 1.1

in [23]).

Theorem 1.1 shows that there are infinite families of polynomials f(X) =

Xn − BX + A ∈ S [X] divisible by X2 ±X + 1. In the next theorem, we
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exclude this case, and we prove an effective finiteness theorem for polyno-

mials f(X) = Xn − BX + A ∈ S [X] with gcd(A,B) = 1 which have a

quadratic factor different from X2 ±X + 1.

Theorem 1.2. Let n ≥ 3, A,B ∈ S and gcd(A,B) = 1. Then the tuples

(n,A,B) for which f(X) = Xn − BX + A has a quadratic factor g(X) =

X2 − bX + a with g(X) 6= X2 ± X + 1 belong to a finite set which can be

determined effectively.

Theorem 1.3. Let S := {2, 3, 5, 7} and put M := {3, 4, 5, 6, 7, 8, 9, 10, 15, 16,

21, 25, 28, 36, 49, 50, 64, 81, 126, 225, 2401, 4375}.

(i) Assume that the polynomial f(X) = Xn − BX + A ∈ S [X] with

gcd(A,B) = 1 has a quadratic factor different of X2 ± X + 1 and

X2 ± 2X + 1. Then

• if n = 3 we have ord2(AB) ≤ 10, ord3(AB) ≤ 7, ord5(AB) ≤ 4,

ord7(AB) ≤ 4;

• if n = 4 we have ord2(AB) ≤ 4, ord3(AB) ≤ 4, ord5(AB) ≤ 4,

ord7(AB) ≤ 4;

• if n ≥ 5, then f(X) is one of the polynomials listed in Table 1.

(ii) If the polynomial f(X) = Xn−BX+A ∈ S [X] with gcd(A,B) = 1

has the quadratic factor X2 + 2X + 1, then we have f(X) = Xn +

(−1)nnX + (−1)n(n− 1) with n ∈M .

(iii) If the polynomial f(X) = Xn−BX+A ∈ S [X] with gcd(A,B) = 1

has the quadratic factor X2−2X+1, then f(X) = Xn−nX+(n−1)

with n ∈M .

(iv) If the polynomial f(X) = Xn−BX+A ∈ S [X] with gcd(A,B) = 1

has the quadratic factor X2 ± X + 1, then f(X) belongs to one of

the infinite families given in (ii) and (iii) of Theorem 1.1.

For n = 3, there are 736 distinct polynomials X3−BX+A ∈ S [X] with

a quadratic factor. We do not list them in a table since it would be too long,

and based on the information from Theorem 1.3 one can easily compute and

list all of them. The situation is similar in the case of n = 4, where one can

easily compute the 64 distinct quartic polynomials X4 − BX + A ∈ S [X]

having a quadratic factor.
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Table 1

n A B n A B n A B

5 ±28 5 5 ±370440 441 7 ±280 1

5 ±15 1 6 3 ±16 7 ±10 7

5 ±6 −1 6 −2 ±5 7 ±16 −8

5 ±3 5 6 −5 ±8 7 ±15000 −875

5 ±1 −1 6 −120 ±56 8 14 ±3

5 ±54 −45 6 −8 ±8 8 1 ±1

5 ±27 9 6 24 ±80 8 162 ±567

5 ±250 −25 6 −250 ±375 8 −81 ±81

5 ±1029 −245 6 −5145 ±2744 13 90 -1

2. Properties of Lucas sequences

Let α, β be such that α + β and αβ are non-zero co-prime integers, and

α/β is not a root of unity. The sequence

(2.1) Un(α, β) :=
αn − βn

α− β
is called the Lucas sequence corresponding to the Lucas pair (α, β). When-

ever it is clear to which pair (α, β) the sequence Un(α, β) corresponds then

we just write Un. In fact, {Un}n≥0 can also be defined as the binary recur-

rence sequence given by Un = bUn−1 − aUn−2 for all n ≥ 2 with U0 := 0,

U1 := 1, where b := α + β and a := αβ. Two Lucas pairs (α1, β1) and

(α2, β2) are said to be equivalent if α1/α2 = β1/β2 = ±1. A prime p is a

primitive prime divisor of Un if p | Un but p - (α− β)2 · U1 . . . Un−1.

For the convenience of the reader we recall a well known property of a

primitive prime divisor p of Un.

Lemma 2.1. Let Un = Un(α, β) be the Lucas sequence corresponding to

the Lucas pair (α, β), having companion polynomial X2 − bX + a. If p is a

primitive prime divisor of Un then n ≤ p+ 1.

Proof. Let p be a primitive prime divisor of Un. By combining (IV.24),

(IV.18) and (IV.19) of [17] we easily get that n | p−(∆
p

), where ∆ = (α−β)2

is the discriminant of Un and ( ·
p
) denotes the Legendre symbol. Thus,

n ≤ p+ 1. �
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We now state a shortened version of the deep theorem of Bilu, Hanrot

and Voutier on primitive prime divisors of Lucas sequences which is enough

for our purposes.

Proposition 2.2 (Bilu, Hanrot, Voutier [2]). Consider the Lucas sequence

Un :=
αn − βn

α− β
.

We then have the following:

• For n > 30 the sequence Un always has a primitive prime divisor.

• For n = 5 and 7 ≤ n ≤ 30, Un always has a primitive prime divisor,

except when (up to equivalence) (α, β) =
(

(c+
√
d)/2, (c−

√
d)/2

)
with the pairs (c, d) listed in Table 2.

Table 2. Exceptional pairs (c, d)

n (c, d)

5 (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,−1364)

7 (1,−7), (1,−19)

8 (2,−24), (1,−7)

10 (2,−8), (5,−3), (5,−47)

12 (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19)

13 (1,−7)

18 (1,−7)

30 (1,−7)

3. Proof of Theorem 1.1

We need in our proof the following fairly trivial observation.

Lemma 3.1. Let f(X) = Xn − BX + A ∈ Z[X] be a polynomial with

gcd(A,B) = 1. If a polynomial g(X) = X2 − bX + a ∈ Z[X] divides f(X)

then we also have gcd(a, b) = 1.

Proof. If we have f(X) = g(X) · h(X) with h(X) = Xn−2 + cn−3X
n−3 +

· · · + c1X + c0 ∈ Z[X], then we have A = c0a and −B = c1a − c0b. Thus

we have

gcd(a, b) | gcd(A,B) = 1,
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which completes our proof. �

The following lemma has been used in several preceding papers (see

e.g. [24]).

Lemma 3.2. Let f(X) = Xn − BX + A ∈ Z[X] (n ≥ 3) and g(X) =

X2 − bX + a ∈ Z[X] be two polynomials with a 6= 0. Assume that g(X) =

(X − α)(X − β) and denote by Un(α, β) the Lucas sequence corresponding

to the Lucas pair (α, β). Then

g(X) | f(X) ⇐⇒ B = Un(α, β) and A = a · Un−1(α, β).

Proof. For convenience we include a short proof. We have g(X) | f(X) if

and only if f(α) = f(β) = 0. By expressing A and B from this system we

get B = Un(α, β) and A = a · Un−1(α, β). Further, if B = Un(α, β) and

A = a · Un−1(α, β) we clearly get f(α) = f(β) = 0. �

Proof of Theorem 1.1. Since g(X) = X2 − bX + a ∈ Z[X] divides f(X) =

Xn − BX + A ∈ S [X] and gcd(A,B) = 1, by Lemma 3.1 we also have

gcd(a, b) = 1. Let α and β denote the two roots of g. Then, by Lemma 3.2,

we see that B = Un(α, β) and A = aUn−1(α, β).

Since gcd(a, b) = 1, we know that α + β and αβ are non-zero co-prime

integers. First assume that α/β is not a root of unity. Then Un(α, β) is

a non-degenerate Lucas sequence, and by the result of Bilu, Hanrot and

Voutier (see Proposition 2.2) for n > 30 every Un has a primitive prime

divisor p, which, by Lemma 2.1, implies n ≤ p + 1. Now we have B =

Un(α, β), and since B ∈ S we see that Un(α, β) cannot have a primitive

prime divisor if n ≥ P + 2. Thus, we either have n ≤ P + 1, or n ≤ 30,

which proves that n ≤ max{P + 1, 30}.

Now assume that α/β is a root of unity. Since gcd(α + β, αβ) = 1, we

conclude that (b, a) ∈ {(1, 1), (−1, 1), (2, 1), (−2, 1)} (see [16], page 6). This

means that for g(X) we have the possibilities X2 − X + 1, X2 + X + 1,

X2 − 2X + 1, X2 + 2X + 1.

Let us first treat the case g(X) = X2 − X + 1. In this case, X6 ≡ 1

(mod g(X)), thus Xn ≡ Xn mod 6 (mod g(X)). This shows that mod g(X)
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we have

Xn ≡



1 if n ≡ 0 (mod 6)

X if n ≡ 1 (mod 6)

X − 1 if n ≡ 2 (mod 6)

−1 if n ≡ 3 (mod 6)

−X if n ≡ 4 (mod 6)

−X + 1 if n ≡ 5 (mod 6)

,

which shows that Xn−BX +A ∈ S [X] is divisible by g(X) exactly in the

cases described in (ii) of Theorem 1.1.

Next consider the case g(X) = X2 + X + 1. In this case X3 ≡ 1

(mod g(X)), and similarly as above working modulo g(X), we get

Xn ≡


1 if n ≡ 0 (mod 3)

X if n ≡ 1 (mod 3)

−X − 1 if n ≡ 2 (mod 3)

.

This proves that in this case Xn − BX + A ∈ S [X] is divisible by g(X)

exactly in the case described in (iii) of Theorem 1.1.

Now let g(X) = X2 + 2X + 1. It easy to see, by induction, that Xn ≡
(−1)n+1(nX+(n−1)) (mod g(X)). Thus, f(X) = Xn−BX+A is divisible

by g(X) = X2 +2X+1 if and only if f(X) = Xn+(−1)nnX+(−1)n(n−1).

Finally, if g(X) = X2 − 2X + 1 then, by induction, we can prove that

Xn ≡ nX − (n− 1) (mod g(X)). Thus, f(X) = Xn −BX +A is divisible

by g(X) = X2 + 2X + 1 if and only if f(X) = Xn − nX + (n− 1).

�

4. Proof of Theorem 1.2

For the proof of Theorem 1.2, we need some well known properties of

the Dickson polynomials of second kind. For convenience of the reader we

collect them in the lemma below.

Let a ∈ R. The polynomial

En(X, a) :=

[n/2]∑
i=0

(
n− i
i

)
(−a)iXn−2i
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is called the Dickson polynomial of the second kind of degree n in the

indeterminate X.

Lemma 4.1. The Dickson polynomials of the second kind have the following

properties:

(i) We have E0(X, a) = 1, E1(X, a) = X, and En fulfills the recurrence

relation

En+2(X, a) = XEn+1(X, a)− aEn(X, a).

(ii) The polynomial Fn(X, Y ) := En(X, Y 2) is a binary form of degree

n.

(iii) The polynomial Fn(X, 1) = En(X, 1) has n simple real roots, more

precisely the n roots of Fn(X, 1) are xj := 2 cos jπ
n+1

for j = 1, 2, . . . , n.

(iv) For the elements of the Lucas sequence Un(α, β) having companion

polynomial X2 − bX + a we have

Un(α, β) = En−1(b, a) for n = 1, 2, . . . .

Proof. For (i), see Lemma 2.3 of [10] and (ii) is trivial by the definition.

For (iii), see the explanation below Lemma 2.17 of [10]. Next, (iv) is trivial

because Un(α, β) and En(b, a) fulfill the same binary recurrence relation,

and that U1(α, β) = E0(b, a) and U2(α, β) = E1(b, a). �

In the proof of Theorem 1.2, after the application of Theorem 1.1, the

main idea is to reduce the problem to the finiteness of the solutions of finitely

many Thue-Mahler equations. The literature on Thue-Mahler equations is

very rich, so here we only mention that the finiteness of the number of

solutions has been proved by Mahler [13], the first effective finiteness result

concerning Thue-Mahler equations is due to Coates (1968) and the best

bound on the variables in the number field case was obtained by Győry and

Yu [7]. Recently, Bérczes, Evertse and Győry [1] proved effective finiteness

results for Thue equations over arbitrary finitely generated domains, which

is the widest generalization of Thue-Mahler equations. In our proof, we use

the following effective but inexplicit result:

Lemma 4.2. Let K be a quadratic number field with discriminant D and

denote by OK the ring of integers of K. Let F (X, Y ) ∈ OK [X] be a binary

form with at least three non-proportional factors in its factorization, and

let p1, . . . , ps ∈ Z be pairwise distinct positive rational prime numbers with
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P := max{p1, . . . , ps}. For x ∈ K let x denote the maximum of the absolute

values of the conjugates of x. For every solution of the equation

F (x, y) = pα1
1 . . . pαs

s in x, y ∈ OK , α1, . . . , αs ∈ Z≥0.

for which gcd(x, y) = 1 we have

x, y < C,

where C is an effectively computable constant depending only on D, F , P

and s.

Proof. This is a special case of Theorem 7.6 in [23]. �

In the proof, we also use effective finiteness results for S-unit equations.

In the case of unit equations the first finiteness result was due to Siegel

(1921). For S-unit equations in the rational case the finiteness was proved by

Mahler (1933) and for S-unit equations over number fields the first finiteness

result follows from a theorem of Parry (1950). The first general effective

result both for unit equations and for S-unit equations has been proved by

Győry (1973, 1974 and 1979, respectively). The known best effective upper

bounds are due to Győry and Yu [7]. Recently Evertse and Győry [6] proved

effective finiteness results for unit equations in two unknowns over arbitrary

finitely generated domains. In our proof, we use the following effective but

inexplicit result:

Lemma 4.3. Let S be a finite set of positive primes and denote by S the

set of all integers having no prime factors outside of S. For every solution

of the equation

x− y = 1 in x, y ∈ S ,

we have

|x|, |y| < C,

where C is an effectively computable constant depending only on S.

Proof. This is a special case of Corollary 1.1 in [23]. �

Proof of Theorem 1.2. Let S = {p1, p2, . . . , ps} be fixed with primes p1 <

p2 < · · · < ps. Assume that the polynomial f(X) = Xn−BX +A ∈ S [X]

with gcd(A,B) = 1 and n ≥ 3 has a quadratic factor g(X) = X2 − bX + a

distinct of X2±X + 1 and of X2± 2X + 1. Then, by Theorem 1.1, we have
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n ≤ max{30, P + 1}. Recall that g(X) = X2±X + 1 is excluded. The case

g(X) = X2 ± 2X + 1 will be treated at the end of the proof.

Fix a value of n such that 3 ≤ n ≤ max{30, P + 1}. Let α, β be the

roots of the polynomial g(X) and denote by Uk(α, β) the Lucas sequence

corresponding to the Lucas pair (α, β). By Lemma 3.2 we have

aUn−1(α, β) = A ∈ S ,

which proves a ∈ S . Thus, we have 2s different possibilities for the square-

free part of a. Let us now fix one of these possibilities, i.e. fix the square-free

part of a, and denote it by d.

By Lemma 4.1 (iv) we know that Un(α, β) = En−1(b, a), where Ek denotes

the kth Dickson polynomial of the second kind. By Lemma 3.2 we have

Un(α, β) = B ∈ S , which shows that

En−1(b, a) ∈ S .

Thus, we also have

(4.1) Fn−1(b,
√
a) ∈ S ,

where
√
a denotes any of the square-roots of a and where the polynomial

Fk(X, Y ) := Ek(X, Y
2) is a binary form of degree n (see Lemma 4.1 (ii)).

Further, by the properties of Dickson polynomials (see Lemma 4.1 (iii))

Fk(X, 1) has simple real roots. Thus, equation (4.1) is a Thue-Mahler equa-

tion over the field Q(
√
d). Recall that n and d are fixed, so using Lemma

4.2 we see that we have only finitely many solutions (b,
√
a), which shows

that there are only finitely many possibilities for a and b, thus also for α

and β, and consequently (using Lemma 3.2 and the fact that n is fixed)

there are also finitely many possibilities for A and B. Thus, we have proved

that the tuples (n,A,B) belong to a finite set.

The last case is when g(X) = X2± 2X + 1. From Theorem 1.1 it follows

that in this case f(X) = Xn + (−1)nnX + (−1)n(n − 1) for n ∈ Z>1 or

f(X) = Xn − nX + (n− 1) for n ∈ Z>1. Since A = ±n, B = ±(n− 1) and

A,B ∈ S , we see that (n, n− 1) is a solution of the S-unit equation

x− y = 1, in x, y ∈ S .

Thus, n is bounded by a constant depending only on S, and thus the tuples

(n,A,B) again belong to a finite set.

�
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5. Proof of Theorem 1.3

To prove (i), we assume that the quadratic factor of f(X) is g(X) =

X2 − bX + a and we denote by α, β the roots of g(X) and by Un(α, β) the

Lucas sequence with companion polynomial g(X). Recall that in case (i)

g(X) 6= X2 ±X + 1 and g(X) 6= X2 ± 2X + 1. By Theorem 1.1 it is clear

that we have n ≤ 30. By Lemma 3.2, we have

g(X) | f(X) ⇐⇒ B = Un(α, β) and A = a · Un−1(α, β).

Thus, it follows that

(5.1) a, Un−1(α, β), Un(α, β) ∈ S .

First let us treat the cases when 8 < n ≤ 30. Fix such a value of n.

By Lemma 2.1, the primes 2, 3, 5, 7 cannot be primitive prime divisors of

Uk(α, β) for any k > 8, so 2, 3, 5, 7 is not a primitive prime divisor for

Un(α, β) for our fixed n. Since S = {2, 3, 5, 7} and Un(α, β) ∈ S this shows

that for our fixed n the element Un(α, β) has no primitive prime divisor at

all. Thus, by (ii) of Proposition 2.2, Un is one of the sequences listed for the

respective n in Table 2. In the Table 3 below we list all possible sequences

for each 8 < n ≤ 30 (if any) for which we computed a, Un−1, Un and checked

that they belong to S .

Table 3. Exceptional sequences in the cases 8 < n ≤ 30

n (c, d) b a g(X) Un−1 Un

30 (1,−7) 1 2 X2 −X + 2 8641 52 · 11 · 89

18 (1,−7) 1 2 X2 −X + 2 271 5 · 17

13 (1,−7) 1 2 X2 −X + 2 32 · 5 −1

12 (1, 5) 1 −1 X2 −X − 1 89 24 · 32

12 (1,−7) 1 2 X2 −X + 2 23 32 · 5
12 (1,−11) 1 3 X2 −X + 3 11 · 23 25 · 5
12 (2,−56) 2 15 X2 − 2X + 15 43 · 17623 2 · 11 · 13 · 41

12 (1,−15) 1 4 X2 −X + 4 23 · 43 3 · 7 · 11

12 (1,−19) 1 5 X2 −X + 5 2531 24 · 33 · 7
10 (2,−8) 2 3 X2 −X + 3 73 2 · 11

10 (5,−3) 5 7 X2 − 5X + 7 2 · 3 · 19 52 · 149

10 (5,−47) 5 18 X2 − 5X + 18 7 · 15193 52 · 401
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From Table 3, we see that (5.1) is fulfilled only in the case of n = 13,

g(X) = X2−X+2 in which case we get the polynomial f(X) = X13+X+90,

which is indeed divisible by X2 −X + 2.

Now we turn to the cases 3 ≤ n ≤ 8. For 0 ≤ k ≤ 8, the kth element of

the sequence Un is listed below:

(5.2)

U0 = 0, U1 = 1, U2 = b, U3 = b2 − a, U4 = b(b2 − 2a),

U5 = b4 − 3ab2 + a2, U6 = b(b2 − a)(b2 − 3a),

U7 = b6 − 5ab4 + 6a2b2 − a3

U8 = b(b2 − 2a)(b4 − 4ab2 + 2a2)

For each fixed 3 ≤ n ≤ 8, using (5.1), we reduced our problem to an equation

of the shape

u+ v = z2 in u, v ∈ S , z ∈ Z,
and we also had some further expressions which belong to S . The equations

and further conditions in the case of each n are listed in Table 4 below.

Table 4. The resulting equations of the shape u+ v = z2

n the equation conditions

3 (b2 − a) + a = b2 b ∈ S

4 (b2 − 2a) + 2a = b2 b ∈ S , b2 − a ∈ S

5 (b2 − 2a) + 2a = b2 b ∈ S , b4 − 3ab2 + a2 ∈ S

6 (b2 − 3a) + 3a = b2 b ∈ S , b2 − a ∈ S , b4 − 3ab2 + a2 ∈ S

7 (b2 − 3a) + 3a = b2 b ∈ S , b2 − a ∈ S , b6 − 5ab4 + 6a2b2 − a3 ∈ S

8 (b2 − 2a) + 2a = b2 b ∈ S , b4 − 4ab2 + 2a2 ∈ S ,

b6 − 5ab4 + 6a2b2 − a3 ∈ S

Now, for every 3 ≤ n ≤ 8 in Table 4 we use Theorem 7.2 of de Weger [5]

to conclude (i) of Theorem 1.3.

For (ii) and (iii), we mention that Theorem 1.1 (iv) and (v) proves that

in this cases we have f(X) = Xn + (−1)nnX + (−1)n(n − 1) and f(X) =

Xn−nX+(n−1), respectively. We also have f(X) ∈ S [X]. Thus, in both

cases it follows that n ∈ S and n− 1 ∈ S , which means that (n, n− 1) is

a solution of the equation

x− y = 1 in (x, y) ∈ S 2.
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However, de Weger solved this equation even for a larger set S. Thus,

from his Theorem 6.3 in [5], we know that ord2(xy) ≤ 12, ord3(xy) ≤ 7,

ord5(xy) ≤ 5, ord7(xy) ≤ 4. Now checking all possible values of x, y ∈ S
with these properties we conclude that n must belong to the set M .

Case (iv) is exactly covered by cases (ii) and (iii) of Theorem 1.1, which

concludes the proof of Theorem 1.3.
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[1] A. Bérczes, J.-H. Evertse and K. Győry, Effective results for Diophantine

equations over finitely generated domains, Acta Arith., 163 (2014), 71–100.

[2] Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas

and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75–122.

[3] A. Bremner, On trinomials of type xn+Axm+1, Math. Scand., 49 (1981), 145–155

(1982).

[4] H. J. Chen, On the quadratic factorization of xn − x − a, J. Math. (Wuhan), 22

(2002), 319–322.

[5] B. de Weger, Algorithms for Diophantine Equations, Ph.D. thesis, Leiden Uni-

versity, 1988.
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